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SUMMARY

New discrete element equations or coef®cients are derived for the transient 1D diffusion±advection or transport
equation based on the Green element replication of the differential equation using linear elements. The Green
element method (GEM), which solves the singular boundary integral theory (a Fredholm integral equation of the
second kind) on a typical element, gives rise to a banded global coef®cient matrix which is amenable to ef®cient
matrix solvers. It is herein derived for the transient 1D transport equation with uniform and non-uniform ambient
¯ow conditions and in which ®rst-order decay of the containment is allowed to take place. Because the GEM
implements the singular boundary integral theory within each element at a time, the integrations are carried out
in exact fashion, thereby making the application of the boundary integral theory more utilitarian. This system of
discrete equations, presented herein for the ®rst time, using linear interpolating functions in the spatial
dimensions shows promising stable characteristics for advection-dominant transport. Three numerical examples
are used to demonstrate the capabilities of the method. The second-order-correct Crank±Nicolson scheme and the
modi®ed fully implicit scheme with a difference weighting value of two give superior solutions in all simulated
examples. # 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The solution to the diffusion±advection or transport equation continues to attract considerable interest

in numerical circles because of its unique features of being either a parabolic or hyperbolic equation,

depending on the values of the parameters of the equation, and also because its solution process offers

valuable computational experience which can be extended to the simulation of the many other ¯ows

of engineering interest. Furthermore, the areas of engineering applications where the transport

equation is encountered are diverseÐagriculture, water resources and environmental, chemical,

petroleum engineering, etc.

Although quite a considerable number of analytic solutions exist in one and two dimensions,1,2

their usefulness is limited to problems with simple boundary conditions and regular geometries.

However, they serve one useful purpose of validating the accuracy of numerical methods. Whereas

earlier numerical calculations of the transport equation were based on the ®nite difference method

(FDM),3,4 there has in the recent past been a shift towards the ®nite element approach. Standard ®nite
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difference schemes produce for advection-dominant cases unacceptably large spurious oscillations or

numerically diffused solutions.

From an earlier summary of numerical solutions of advection±diffusion by Anderson5 and a more

recent one by Zienkiewicz and Taylor6 which focused mainly on ®nite-element-based schemes, it is

obvious that the solution of the transport equation will continue to generate much interest in

numerical circles. Finite element schemes which were based on Bobnov±Galerkin weighing functions

showed similar unpleasant numerical features of spurious oscillations and a diffused or smeared front

because of the dif®culty encountered in the approximation of the convective term,7 but, by adopting

the upwind differencing of the advective term ®rst observed in ®nite difference circles,8 some of

these unpleasant features were reduced.9,10 A natural extension of upwind differencing in ®nite

element applications gave rise to Petrov±Galerkin weighing functions in which the weighing function

takes into account the direction of the advecting velocity vector and the relative magnitudes of

diffusion and advection which are embodied in a dimensionless quantity known as the Peclet

number.11,12 The attempts seem to have heralded a ¯urry of activity in ®nite element circles.

However, an evolving consensus of opinion on this large array of schemes is a return to basics and

simplicity of model formulation rather than the introduction of weighting coef®cients whose

theoretical justi®cation may not be quite convincing except for the fact that, under restrictive cases,

better solutions are achieved.

In other circles the ®nite analytic method has been applied to the diffusion±advection equation.13

Unlike in the ®nite difference or ®nite element methods, the resulting discrete algebraic equations of

the governing partial differential equations are obtained from the analytic solution within each local

element. A unique quality of this formulation is that both the in¯uence of the skewed convective

vector and the magnitude of convection are automatically accounted for. Onyejekwe14 adopted a

generalized co-ordinate for the one-dimensional advection±diffusion equation and, by adapting the

grids to cluster around the areas of large concentration gradients, obtained fairly accurate results for

high-Peclet-number ¯ows.

Contemporary developments have been taking place in boundary element circles on accurate

modelling of the transport equation. An earlier attempt by Brebbia and Skerget,15 which employed

the temporal, free space Green functions in two spatial dimensions, was applied to cases with small

values of Peclet number. Another approach,16,17 based on the fundamental solution to the 2D

Laplacian operation, treated the transient problem as a quasi-steady one and offered solutions which

covered the whole spectrum of Peclet number values. However, the major drawbacks of that

approach were dealing with a fully populated global coef®cient matrix, which greatly tasked

computing resources, and the inability to accommodate medium heterogeneity. These boundary

element formulations were developed for transient problems in two spatial dimensions.

It has been recognized that the boundary-only character of the boundary element theory, observed

for elliptic problems and considered one of the strengths of the boundary element method (BEM), is

not retained when dealing with a parabolic=hyperbolic equation like the diffusion±advection

equation. Domain integration, earlier considered an undesirable numerical feature, has to be done

even when the free space Green function of the constant velocity advection±dispersion operator is

used.18 However, when domain integration is implemented along the lines of the Green element

approach, it is easier to handle, because the source and ®eld nodes always remain on the same

element.19±20

The Green's element approach, which derives a system of discrete element equations based on the

singular integral boundary element concept, has the advantages of producing a sparse banded global

coef®cient matrix which is easier to invert and of readily accommodating medium heterogeneity. The

demonstration of the method in handling non-linear problems eliminates one of the earlier assertions

that the boundary element theory is inapplicable to non-linear problems.21±25
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In effect, what we have achieved is to enhance the range of applicability of the boundary integral

theory, but not to claim the superiority of the GEM over other traditional methods. Underpinning this

objective is our belief that there should be a co-operation of numerical methods whereby the strengths

of any method are exploited and adapted for use. With this in mind we combined the elegant

boundary integral representation of the governing differential equation with the versatile domain

discretization approach of the FEM to formulate a technique known as the GEM.

Here the Green element equations are derived for the 1D transient diffusion±advection equation

with ®rst-order decay under uniform and non-uniform ambient ¯ow situations using the free space

Green function of the diffusive term. The new discrete element equations or coef®cients obtained

exhibit stable characteristics even for large Peclet number values. Three numerical examples for

which analytic solutions are available are used to demonstrate the capability of the method.

2. THE GREEN ELEMENT FORMULATION

The partial differential equation that describes one-dimensional transport with ®rst-order decay in a

homogeneous medium under transient ¯uid ¯ow conditions is given by

D
@2c�x; t�
@x2

ÿ u�x; t� @c�x; t�
@x
ÿ @c�x; t�

@t
ÿ mc � 0 on x0 4 x4 xL; �1�

in which c � c�x; t� is the solution concentration, D is the hydrodynamic dispersion coef®cient

�L2 Tÿ1�; u � u�x; t� is the velocity in the x-direction (L T71), x and t are the spatial and temporal

independent variables respectively. m is the rate constant of ®rst-order decay for a non-conservative

pollutant (T71) and L � x0 ÿ xL is the length of the ¯ow domain. Equation (1) continues to receive

enormous interest because of its extensive applications in the areas of agriculture, chemical

environmental and water resources engineering. The solution of (1) requires information on the

boundary conditions at x0 and xL and data on c�x; t� at the initial time t0. The ®rst-type or Dirichlet

condition speci®es the concentration at the end points:

c�x0; t� � g0�t�; c�xL; t� � tL�t�: �2a�
The second-type or ¯ux-type or Neumann condition speci®es the ¯ux of the substance being

transported:

D
@c�x0; t�
@x

� f0�t�; D
@c�xL; t�
@x

� fL�t�: �2b�

Alternatively, an appropriate combination of the two may be used. The initial data specify the

concentration at the initial time t0:

c�x; t0� � c0�x�; x0 4 x4 xL: �2c�
Our current Green element formulation is based on the Fredholm singular integral theory which

employs the free space Green function of the term with the highest derivative, namely @2=@x2. We

propose a differential equation complementary to (1) of the form

d2G

dx2
� d�xÿ xi�; ÿ14 x41; �3�

in which d�xÿ xi� is the Dirac delta function and xi is commonly referred to as the source point. The

general expression of the solution to (3) is of the form

G�x; xi� � 1
2
�jxÿ xij � k�; �4�
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where k is an arbitrary constant. (Although k is an arbitrary constant, its value has to be judiciously

chosen, otherwise some of the diagonal elements could have zero value. Certainly the value ofk

cannot be set to zero in our formulation because this leads to the diagonal element entry for the ¯ux in

the global coef®cient matrix being zero, thereby producing a singular matrix.) We elect to set k to

unity. G�x; xi� is referred to as the free space Green function or the fundamental solution or the unit

response function. It is the response of a system governed by (3) due to an instantaneous unit input.

Green's second identity is employed in transforming the differential equation into an integral one. It

is stated for two functions G�x; xi� and c�x; t� which should be at least twice differentiable with

respect to the spatial variable x:�xL

x0

c
d2G

dx2
ÿ G

@2c

@x2

� �
dx � c

dG

dx
ÿ G

@c

@x

� �x�xL

x�x0

: �5�

Introducing equations (1) and (3) into (5) yields

D ÿlic�xi; t� � c
@G

@x

� �x�xL

x�x0

ÿ G
@c

@x

� �x�xL

x�x0

 !
�
�xL

x0

G u
@c

@x
� @c
@t
� mc

� �
dx � 0; �6�

in which

li �
�xi

ÿ1
d�xÿ xi�dx�

�1
xi

d�xÿ xi�dx �
�xi

xiÿe
d�xÿ xi�dx�

�xi�e

xi

d�xÿ xi�dx; �7�

where e is any small positive quantity. Using the property of the Dirac delta function gi takes the

value of unity if xi is within the interval x0 < x < xL and li � 0�5 if xi is at the end points of the ¯ow

length. The derivative of the free space Green function with respect to x is given by the expression

dG�x; xi�
dx

� 1
2
�H�xÿ xi� ÿ H�xi ÿ x��; �8�

where H is the Heaviside function de®ned as

H�xÿ xi� � 1; x > xi;
0; x < xi:

�
�9�

The ¯ow region is discretized into M line segments with a typical segment of element (e) denoted

by the interval �x�e�1 ; x
�e�
2 � (see Figure 1). The discretized form of the integral equation (6) when the

¯ow region is discretized is given by

PM
e�1

D ÿl�e�i c�e��xi; t� � c
@G

@x

� �x�x
�e�
2

x�x
�e�
i

ÿ G
@c

@x

� �x�x
�e�
2

x�x
�e�
1

 !
�
�x
�e�
2

x
�e�
1

G u
@c

@x
� @c
@t
� mc

� �
dx � 0: �10�

Figure 1. De®nition sketch for linear 1D element
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To evaluate the line integral over a typical element, it is necessary to prescribe a distribution of c, u

and @c=@x over each element. We elect to use one of the simplest interpolation functionsÐa linear

oneÐto approximate these quantities:

c�x; t� � O�e�1 c
�e�
1 �t� � O�e�2 c

�e�
2 �t�; f�x; t� � O�e�1 f�e�1 �t� � O�e�2 f�e�2 �t�; u�x; t� � O�e�1 u

�e�
1 �t� � O�e�2 u

�e�
2 �t�;
�11�

in which f � @c=@x, the quantity c
�e�
1 �t�, for instance, denotes the value of c�x; t� at x

�e�
1 at time t and

the element interpolating functions O�e�1 and O�e�1 are given by

O�e�1 �z� � 1ÿ z; O�e�2 �z� � z; �12�

where z � �xÿ x
�e�
1 �=l�e�; 04z4 1, is a local co-ordinate that has its origin at x

�e�
1 and l�e� is the

length of the element. The local co-ordinate z is a more appropriate one in Green element calculations

because it greatly simpli®es the evaluation of the line integrals. Introducing equations (4), (8) and

(11) into (10) yields

PM
e�1

Dfÿ2l�e�i c
�e�
i � �H�x�e�2 ÿ x

�e�
i � ÿ H�x�e�i ÿ x

�e�
2 ��c�e�2 ÿ �H�x�e�1 ÿ x

�e�
i � ÿ H

�e�
i ÿ x

�e�
1 ��c�e�1

ÿ �jx�e�2 ÿ x
�e�
i j � 1�f�e�2 � �jx�e�1 ÿ x

�e�
i j � 1�f�e�1 g

�
�x
�e�
2

x
�e�
1

�jxÿ x
�e�
i j � 1�

�
�O�e�1 u

�e�
1 � O�e�2 u

�e�
2 ��O�e�1 f�e�1 � O�e�2 f�e�

2
� � O�e�1

dc
�e�
1

dt
� mc

�e�
1

 !

� O�e�2

dc
�e�
2

dt
� mc

�e�
2

 !#
dx � 0: �13�

Two sets of discretized equations are obtained from (13): the ®rst comes from considering the source

node x
�e�
i located at x

�e�
1 , giving

PM
e�1

D�ÿc
�e�
1 � c

�e�
2 � f�e�1 ÿ �1� l�e��f�e�2 �

� l�e�
�1

0

�1� l�e�z� �O�e�1 u
�e�
1 � O�e�2 u

�e�
2 ��O�e�1 f�e�1 � O�e�2 fe

2� � O�e�1

dc
�e�
1

dt
� mc

�e�
1

 !"

� O�e�2

du
�e�
2

dt
� mc

�e�
2

 !#
dz � 0; �14a�

and the second comes from considering the source node x
�e�
i located at x

�e�
2 , giving

PM
e�1

D�c�e�1 ÿ c
�e�
2 � �1� l�e��f�e�1 ÿ f�e�2 �

� l�e�
�1

0

�1� l�e��1ÿ z�� �O�e�1 u
�e�
1 � O�e�2 u

�e�
2 ��O�e�1 f�e�1 � O�e�2 f�e�2 � � O�e�1

dc
�e�
1

dt
� mc

�e�
1

 !"

� O�e�2

du
�e�
2

dt
� mc

�e�
2

 !#
dz � 0: �14b�
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Combination of (14a,b) into matrix form yields

PM
e�1

DR
�e�
ij c
�e�
j � �DL

�e�
ij � V

�e�
ikj u
�e�
k �f�e�j � T

�e�
ij

du
�e�
j

dt
� mc

�e�
j

 !
� 0; i; j; k � 1; 2; �15�

in which the elemental matrices are

R
�e�
ij �

ÿ1 1

1 ÿ1

� �
� �ÿ1��i�jÿ1�; i; j � 1; 2; 16�a�

L
�e�
ij �

1 ÿ�1� l�e��
1� l�e� ÿ1

" #
; i; j � 1; 2; �16b�

T
�e�
11 � l�e�

�1

0

�1ÿ z��1� l�e�z�dz � T
�e�
22 � l�e�

�1

0

z�1� l�e��zÿ 1��dz � l�e��3� l�e��
6

;

T
�e�
12 � l�e�

�1

0

z�1� l�e�z�dz � T21 � l�e�
�1

0

�1ÿ z��1� l�e��zÿ 1��dz � 1�e��3� 2l�e��
6

;

�16c�

V
�e�
111 � l�e�

�1

0

�1ÿ z�2�1� l�e�z�dz � V
�e�
222 � l�e�

�1

0

z2�1� l�e��zÿ 1��dz � l�e��4� l�e��
12

;

V
�e�
112 � V

�e�
121 � l�e�

�1

0

z�1ÿ z��1� l�e�z�dz � V
�e�
212 � V

�e�
221 � l�e�

�1

0

z�1ÿ z��1� l�e��zÿ 1��dz �16d�

� l�e��2� l�e��
12

;

V
�e�
122 � l�e�

�1

0

z2�1� l�e�z�dz � V
�e�
211 � l�e�

�1

0

�1ÿ z�2�1� l�e��zÿ 1��dz � l�e��4� 3l�e��
12

:

Equation (15) is referred to as the system of element equations of the Green element formulation of

the diffusion±advection equation under non-uniform ¯ow. It provides all the information required to

solve for the nodal unknowns. Because there are two degrees of freedom at each node, i.e. c and f,

the formulation can be said to be a mixed formulation. The advantage of such a mixed formulation is

that the primary variable c and its spatial derivative f are approximated by the same interpolation

basis functions, ensuring that their accuracies are of the same order. For our current formulation

where we have employed linear basis interpolation functions to approximate c and f within the

element, this means that those quantities will be continuous at the nodes, i.e. have C0 continuity. This

approach is in contrast with those of other numerical methods where f is treated as a secondary

variable that is obtained from the primary variable by numerical differentiation, thereby reducing by

one order the accuracy of the spatial derivative of the primary variable. Equation (15) is a system of

®rst-order linear differential equations in time which can be solved for c and f at the nodes by

employing an appropriate approximation of the temporal derivative. We elect to use the two-level
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time discretization scheme that approximates the temporal derivative at t � tm�a � tm � aDt by a

difference expression so that equation (15) becomes

PM
e�1

a�DR
�e�
ij c
�e�
j;m�1 � �DL

�e�
ij � V

�e�
ijk u
�e�
k;m�1�f�e�j;m�1� � �1ÿ a��DR

�e�
ij c
�e�
j;m � �DL

�e�
ij � V

�e�
ijk u
�e�
k;m�f�e�j;m�

� T
�e�
ij

1

Dt
�c�e�j;m�1 ÿ c

�e�
j;m� � m�ac

�e�
j;m�1 � �1ÿ a�c�e�j;m�

� �
� 0; i; j; k � 1; 2; 04a4 1; �17�

in which a is a time weighting factor, the subscripts m� 1 and m denote the current and previous time

levels respectively and Dt � tm�1 ÿ tm is the time step.

When the velocity of the transporting ¯uid is uniform, i.e. U �t� � U �x; t�, then it is no longer

necessary to express the velocity as a linear function of its nodal values. In that case the integral

equation given by (13) becomes

PM
e�1

Dfÿ2l�e�i c
�e�
i � �H�x�e�2 ÿ x

�e�
i � ÿ H�x�e�i ÿ x

�e�
2 ��c�e�2 ÿ �H�x�e�1 ÿ x

�e�
1 � ÿ H�x�e�i ÿ x

�e�
i ��c�e�1

ÿ �jx�e�2 ÿ x
�e�
i j � 1�f�e�2 � �jx�e�1 ÿ x

�e�
i j � 1�f�e�1 g

�
�x
�e�
2

x
�e�
1

�jxÿ x
�e�
i j � 1� O�e�1 Uf�e�1 �

dc
�e�
1

dt
� mc

�e�
1

 !
� O�e�2 Uf�e�2 �

dc
�e�
2

�e�dt
� mc

�e�
2

 !" #
dx: �18�

Employing the generalized two-level time scheme, the above equation gives a system of discrete

equations of the form

PM
e�1

a�DR
�e�
ij c
�e�
j;m�1 � �DL

�e�
ij � Um�1T

�e�
ij �f�e�j;m�1� � �1ÿ a��DR

�e�
ij c
�e�
j;m � �DL

�e�
ij � UmT

�e�
ij �f�e�j;m�

� T
�e�
ij

1

Dt
�c�e�j;m�1 ÿ c

�e�
j;m� � m�ac

�e�
j;m�1 � �1ÿ a�c�e�j;m�

� �
� 0; i; j; k � 1; 2; 04a4 1: �19�

Equation (19) is a system of discrete equations for the transient 1D diffusion±advection equation

under uniform ¯ow. In view of another version of this equation that will shortly be derived, we shall

refer to this model as the ®rst quasi-steady Green element model for the diffusion±advection equation

under uniform ¯ow or GEDAU-1 model. Another model of (19) can be derived for the uniform

velocity case by recognizing that the integral over a typical element for the advection term in (10) can

be transformed in the following manner:

�x�e�
2

x
�e�
1

UG
@C

@x
dx � U

�x
�e�
2

x
�e�
1

@�cG�
@x
ÿ c

dG

dx

� �
dx � U cG

����x
�e�
2

x
�e�
1

ÿ
�x
�e�
2

x
�e�
1

c
dG

dx
dx

 !
: �20�
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It can now be veri®ed that with the above transformation and the introduction of the expressions for G

and dG=dx and the linear interpolation distribution for c the advective term with uniform ¯ow

becomes

2

�x
�e�
2

x
�e�
1

UG
@c

@x
dx � U

2

ÿ1 1� l�e�

ÿ�1� l�e�� 1

" #
ÿ l�e�

�1

0

�1ÿ z�dz
�1

0

zdz

ÿ
�1

0

�1ÿ z�dz ÿ
�1

0

zdz

266664
377775

0BBBB@
1CCCCA

c
�e�
1

c
�e�
2

0@ 1A

� UP
�e�
ij c

�e�
j �

U

2

ÿ�2� l�e�� 2� l�e�

ÿ�2� l�e�� 2� l�e�

" #
c
�e�
1

c
�e�
2

0@ 1A; i; j � 1; 2: �21�

With this treatment given to the advection term, the system of discrete element equations

incorporating the generalized two-level time discretization schemes becomesPM
e�1

a�D�Rij � Um�1P
�e�
ij ��e�c�e�j;m�1 � DL

�e�
ij f
�e�
j;m�1� � �1ÿ a���DR

�e�
ij � UmP

�e�
ij �c�e�j;m � DL

�e�
ij fu

�e�
j;m�

� T
�e�
ij

�
1

Dt
�c�e�j;m�1 ÿ c

�e�
j;m� � m�ac

�e�
j;m�1 � �1ÿ a�c�e�j;m�

�
� 0; i; j; k � 1; 2; 04a4 1: �22�

We shall refer to this model as the second quasi-steady uniform ¯ow advection±diffusion Green

element model (GEDAU-2 model). Another approximation of the temporal derivative could also be

incorporated into the Green element model. It comes from the use of a modi®ed fully implicit scheme

that approximates the temporal derivative as

dc
�e�
j

dt

����
t�tm�1

� dc
�e�
j;m�1

dt
� a

Dt
�c�e�j;m�1 ÿ c

�e�
j;m� � �1ÿ a� dc

�e�
j;m

dt
; 14a4 2: �23�

With (23) we present, without any explanation, other versions of the discrete equations (17), (19) and

(22) when the modi®ed fully implicit scheme is incorporated.

Using the modi®ed fully implicit scheme, equation (17) becomes

PM
e�1

�DR
�e�
ij c
�e�
j;m�1 � �DL

�e�
ij � V

�e�
ijk u
�e�
k;m�1f

�e�
j;m�1�� � T

�e�
ij

a
Dt
�c�e�j;m�1 ÿ c

�e�
j;m� � �1ÿ a� dc

�e�
j;m

dt
� mc

�e�
j;m�1

 !
� 0; i; j; k � 2; 14a4 2; �24�

equation (19) becomes

PM
e�1

�DR
�e�
ij c
�e�
j;m�1 � �DL

�e�
ij � Um�1T

�e�
ij �f�e�j;m�1� � T

�e�
ij

a
Dt
�c�e�j;m�1 ÿ c

�e�
j;m� � �1ÿ a� dc

�e�
j;m

dt
� mc

�e�
j;m�1

 !
� 0; i; j; k � 1; 2; 14a4 2; �25�

and equation (22) becomes

PM
e�1

�DR
�e�
ij � Um�1Pij�c�e�j;m�1 � DL

�e�
ij f
�e�
j;m�1 � T

�e�
ij

a
Dt
�c�e�j;m�1 ÿ c

�e�
j;m� � �1ÿ a� dc

�e�
j;m

dt
� mc

�e�
j;m�1

 !
� 0; i; j; k � 1; 2; 14a4 2: �26�
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It now remains to assemble the elemental matrices for all M elements, which should be done so that

two degrees of freedom are maintained at each node. At this stage as well the boundary and initial

conditions should be effected. The resultant global equation is given by

Aij

cj

fj

� �
� Si: �27�

The global coef®cient matrix is banded with a half-bandwidth of two and with a row dimension that

is twice the number of elements. The matrix can be solved quite ef®ciently with a banded matrix

solver for the nodal quantities c and f at the current time tm�1 � tm � Dt.

3. NUMERICAL EXPERIMENTS AND DISCUSSION

Three numerical examples of transient 1D diffusion±advection problems are used to demonstrate the

capabilities and characteristics of the numerical method. The ®rst is the classical 1D transport

problem which is used quite often to assess the performance of many numerical schemes. The

problem is governed by (1) with m � 0 and the contaminant is transported under uniform velocity

conditions. The boundary and initial conditions are

c�0; t� � 1;
@c�x � 1; t�

@x
� 0; c�x; t � 0� � 0: �28�

The solution to this transport problem with the above conditions is well known26 and so is not

repeated here. To assess the performance of the numerical scheme in simulating this example, two

cases or modes of transport processes are examined. One case is a marginally advection±dominant

transport process represented by a local Peclet number Pe� 2 (Pe � Ul=D, where l is the spatial size

of each element) and the second case represents a transport process of strong advection dominance

with a local Peclet number Pe� 50. The numerical calculations are carried out with a uniform

ambient velocity U � 1 and spatial size of each element l � 0�025 and the solution of the

concentration front is presented at t � 0�5. The in¯uence of temporal discretization on the quality of

the numerical solutions is measured by the dimensionless parameter known as the Courant number,

which is expressed as Cr � UDt=l, and the two values of Courant number are employed in the

calculations: Cr � 0�2 and 1. A small value of Courant number represents a numerical computation

with small time steps. A number of numerical experiments are carried out using this example with the

aim of examining the quality of the numerical solutions obtained by incorporating the various time

discretization schemes into the Green element model for uniform ¯ow conditions (GEDAU-1).

Figure 2(a) and 2(b) show plots of the analytical and numerical solutions for the marginally

advection±dominant transport case (Pe � 2) with Courant numbers Cr� 0�2 and 1 respectively.

Although four values of time weighting factor of the generalized two-level time discretization

scheme of (19) (a� 0�5, 0�67, 0�75 and 1) and four values of time weighting factor of the modi®ed

implicit scheme of (26) (a� 1�25, 1�5, 1�75 and 2) were used in the numerical calculations for this

marginally advection±dominant transport mode, only results using one of the weighting values are

presented because of the cluster of solutions. However, the quality of the solutions using these eight

values of time discretization parameter is best assessed from Table I, which gives the l2 error norm el,

the peak concentration error ep (indicative of the overshoot) and the maximum negative concentration
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Figure 2(a). GEM and exact solution, of example 1 for Pe� 2 and Cr� 0�2

Figure 2(b). GEM and exact solutions of example 1 for Pe� 2 and Cr� 1

Table I. Accuracy assessment values of numerical solutions with various time discretization schemes for
example 1 (Pe� 2)

Cr � 0�2 Cr � 1

el ep el ep

a (61072) (61075) en (61072) (61075) en

0�5 4�29 0�0 0�0 3�53 0�20 0�0
0�67 4�95 9�54 0�0 12�30 0�0 0�0
0�75 5�70 0�0 0�0 17�34 9�54 0�0
1 8�57 0�0 0�0 30�36 0�0 0�0
1�25 6�24 0�0 0�0 20�73 0�0 0�0
1�5 4�96 0�0 0�0 13�31 0�0 0�0
1�75 4�39 0�0 0�0 7�51 0�0 0�0
2 4�29 0�0 0�0 3�80 0�0 0�0
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error en. (The last parameters are, for this example, indicative of spurious oscillations or wiggles.)

The expressions of these three error estimates are

el �
�P

i

�cN
i �t� ÿ cE

i �2
�0�5

; ep � jmax cN
i �t� ÿmax cE

i �t�j; en � max jcN
i �t� < 0j;

�29�
where the superscripts N and E represent the numerical and exact solutions respectively and the

subscript i indicates the spatial nodal locations where the concentration values are computed. The

results in Table I show that the numerical calculations with time discretization weighting values

a � 0�5 and 2 produce the best solutions and for a local Peclet number Pe � 2 the numerical results

using Courant numbers Cr � 0�2 and 1 do not differ appreciably. For the strongly advection-

dominant transport case with Pe� 50 the exact and numerical solutions with the eight values of time

discretization parameter are presented in Figures 3(a) and 3(b) for Cr� 0�2 and in Figures 3(c) and

3(d) for Cr� 1. Table II gives the values of accuracy parameters for the various time discretization

schemes and Cr� 0�2 and 1. The results for this advection-dominant transport show that the quality

of the numerical solution is highly dependent on the value of Courant number or size of time step

used in the computations as well as the time discretization scheme employed. For all practical

purposes the numerical solutions are free of wiggles or spurious oscillations at the downstream end of

the concentration front; the scheme with a� 2 gave the best approximation of the sharp front,

although it has signi®cant oscillations upstream of the front. The temporal discretization scheme with

difference weighting value a� 1 (fully implicit scheme) gave the most diffused or dissipative

solution, although it was completely free from oscillations upstream and downstream of the

concentration front even for Cr� 1. These results indicate that for advection±dominant transport,

small values of Courant number or small time steps have to be incorporated in the calculations to

achieve reasonably good results when linear interpolation functions are used to approximate the

dependent variables in the spatial dimension. Also incorporating the fully modi®ed time

discretization with weight a� 2 into the Green element model offers some advantage in the quality

of numerical solution.

Since this classical example of transport occurs under uniform ambient velocity, we used the more

challenging case of advection-dominant transport to assess the performance of the two models

(GEDAU-1 and GEDAU-2) given by (19) and (22). Without carrying out any numerical calculations

Figure 3(a). Performance of two-level time discretization schemes on example 1 for Pe� 50 and Cr� 0�2
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Figure 3(c). Performance of two-level discretization schemes on example 1 for Pe� 50 and Cr� 1

Figure 3(b). Performance of modi®ed fully implicit time discretization schemes on example 1 for Pe� 50 and Cr� 0�2

Figure 3(d). Performance of modi®ed fully implicit time discretization schemes on example 1 for Pe� 50 and Cr� 1
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on this example, we can highlight the similarities and dissimilarities of the two models. Theoretically

both models are the same: the transformation of (2) does not introduce any approximation to the

formulation. However, to achieve the system of discrete equations, the distribution of the dependent

variables is approximated by some interpolating functions, which is where the two models differ.

While the ®rst model approximates the ®rst derivative of c�x; t�, i.e. f�x; t�, of the advective term by

linear interpolation functions, the second model approximates the concentration c�x; t� by the same

set of interpolating functions. Thus the difference between the two formulations will depend on

which of them gives a better approximation of those quantities in the advection term. To determine

the one which gives a better approximation of the advection term, we compare the exact solutions for

c�x; t � 0�5� and �@c�x; t � 0�5�=@x�l or f�x; t � 0�5�l and their linear interpolation pro®les in Figures

4(a) and 4(b) for the case with Pe� 50. (Note that we have intentionally made the vertical scales of

the two plots the same for ease of comparison.) These two ®gures show that there is, for this example,

no obvious advantage in using either of the models. Actual calculations were carried out on this

example using both model and their solutions were virtually the same. The only instance when one

model will give a better result is when a linear approximation ®ts either the distribution of c�x; t� or

the product of the spatial size and the distribution of f�x; t� better than the other.

Table II. Accuracy assessment values of numerical solutions with various time discretization schemes for
example 1 (Pe� 50)

Cr � 0�2 Cr � 1

el ep en el ep

a (61071) (61073) (61073) (61071) (61073) en

0�5 1�81 47�55 5�44 3�70 173�2 0�0
0�67 2�57 5�76 0�58 5�05 5�04 0�0
0�75 3�01 1�35 0�16 6�00 0�15 0�0
1 4�07 0�52 0�0 7�91 0�015 0�0
1�25 3�25 0�96 0�06 6�55 0�044 0�0
1�5 2�59 0�046 0�56 5�26 3�99 0�0
1�75 2�09 23�80 1�97 4�04 34�11 0�0
2 1�81 44�08 5�10 3�54 134�7 0�0

Figure 4(a). Effect of linear interpolation of derivative of concentration pro®le by GEDAU-1 model approximation of advective
term using example 1 with Pe� 50

MIXED GREEN ELEMENT FORMULATION 449

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 25: 437±454 (1997)



Our second example is one in which an initial Gauss-hill concentration pro®le is subjected to

hydrodynamic dispersion and advection. The boundary conditions and initial Gauss-hill pro®le are

given by

c�x � ÿ1; t� � 0; f�x � 1; t� � 0; t > 0; c�x; 0� � exp ÿ �xÿ x0�2
2s2

0

 !
: �30�

The exact solution is given by

c�x; t� � s0

s
exp ÿ �xÿ �x�2

2s2

 !
; �31�

in which

s2 � s2
0 � 2Dt; �x � x0 �

�t

0

u�s�ds: �32�

We have used the following parameters in our simulations: x0 � 0 and s0 � 0�1. The numerical

solutions are obtained at time t � 0�5. As in the ®rst example, we examine two transport modes: one

is marginally advection±dominant transport with Pe� 2 and the other is strongly advection-dominant

transport with Pe� 50. Both cases are simulated with Cr � 0�2 and 1. The numerical solutions using

a time weighting value a� 2 are presented along with the analytical solution in Figure 5 for the case

with Pe� 2. As observed in the previous example, the numerical solutions are virtually the same

irrespective of the value of Courant number employed. For the strongly advection-dominant transport

(Pe� 50) the numerical solutions using three selected time discretizations (a� 0�5, 1�75 and 2) are

presented in Table III for Cr� 0�2 and 1 in terms of the accuracy assessment parameters el; ep and en

de®ned earlier. Only the numerical solutions with a� 0�5 are presented along with the analytic

solution in Figure 6. The numerical solutions with a� 0�5 are slightly better than those with a� 2.

The results of Figure 6 show good agreement between the exact and GEM solutions.

Using the second example with D � 5� 10ÿ4, the ability of the model to handle a situation where

the velocity is time-dependent is examined. The imposed ambient velocity is given by

U �t� � 4 sin�4pt�: �33�

Figure 4(b). Effect of linear interpolation of concentration pro®le by GEDAU-2 model approximation of advective term using
example 1 with Pe� 50
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A uniform time step of 561073 is employed in the numerical calculations. The numerical and exact

solutions at t� 0�5 are presented in Figure 7, which shows good agreement of results.

The third example of transient 1D transport employed to validate our model is one in which ®rst-

order decay of the advecting containment is allowed to take place. The physical interpretation of this

transport example, which brings out its engineering signi®cance, is that of a contaminated stream

being cleaned or decontaminated using mechanical means of advection from a freshwater source and

a biological=chemical process which induces ®rst-order decay of the pollutant. The initial and

boundary conditions are

c�x; t � 0� � 1; c�x � 0; t > 0� � 0;
@c�x � 1; t > 0�

@x
� 0: �34�

The exact solution is2

c�x; t� � exp�ÿmt� 1ÿ 1

2
erfc

xÿ Ut

2
p�Dt�

� �
ÿ 1

2
exp

Ux

D

� �
erfc

x� Ut

2
p�Dt�

� �� �
; �35�

where `erfc' is the complementary error function. Two cases of this example with the following

parameters are examined: (i) U � 1;D � 0�025 with corresponding local Peclet Pe� 2 and m� 0�2;

(ii) U � 1;D � 5� 10ÿ4 with corresponding local Peclet Pe� 50 and m� 0�2. The numerical

calculations are done using a time weighting factor a� 2 and a uniform spatial element size of 0�025,

while Cr� 1 is used for case (i) and Cr � 0�2 for case (ii). The numerical and exact solutions

obtained at times t� 0�5 and 1 are presented in Figure 8(a) for case (i) and in Figure 8(b) for case (ii).

For case (i), which corresponds to mildly advection-dominant transport (Pe� 2), the exact solution is

Table III. Accuracy assessment values of numerical solutions with various time discretization schemes for
example 2 (Pe� 50)

Cr � 0�2 Cr � 1

el ep en el ep en

a (61073) (61073) (61075) (61073) (61073) (61075)

0�5 5�56 1�28 2�98 85�83 3�12 1�06
1�75 41�89 17�46 1�02 230�10 91�40 0�31
2 7�28 1�01 3�48 110�90 29�49 1�81

Figure 5. GEM and exact solution of example 2 with constant velocity (Pe� 2, Cr� 0�2 and 1
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Figure 8(a). GEM and exact solutions of example 3 with ®rst-order decay (m� 0�2, Pe� 2 and Cr� 1

Figure 6. GEM and exact solution of example 2 with constant velocity (Pe� 50, Cr� 0�2 and 1

Figure 7. GEM and exact solutions of example 2 with time-dependent velocity for Pe� 50
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reproduced by the numerical scheme, while for case (ii), which corresponds to strongly advection-

dominant transport (Pe� 50), the sharp front is reproduced by the numerical scheme but the

numerical solution has trailing oscillations whose strength appears to be decreasing as the simulation

time increases.

It should be noted that the applicability of the GEM has only been tested on analytical or closed-

form solutions. Comparison with other methods was purposely avoided because it is not our intention

at this stage to engage in a rather futile argument of claiming the superiority of one numerical method

over another. It is our belief that most numerical methods in existence have their strong and weak

points; the user can only be guided as to which method to adopt by a thorough understanding of the

physics of the problem.

4. CONCLUSIONS

A new set of discrete element equations has been obtained for the transient 1D diffusion±advection

equation with ®rst-order decay for uniform or non-uniform ¯ow velocity by a mixed Green element

formulation. Using linear spatial elements and the free space Green function of the second-order

derivative term, the formulation, based on the singular boundary element theory, discretizes the ¯ow

domain and incorporates a time-marching scheme in a typical ®nite element fashion. In contrasts,

earlier attempts to adopt this combination have always taken the form of implementing the FEM in

the problem domain and the BEM on the boundaries.27±29 One advantage of our formulation is that

the GEM adopts a ®nite element domain discretization that results in a banded global coef®cient

matrix which is easier to handle numerically. Because the formulation ensures C0 continuity of the

concentration and its ®rst spatial derivative at the nodes and since the elemental integrals are

evaluated in an exact manner, the discrete element equations exhibit stable characteristics even when

advection is dominant. The three examples of transport problems examined show that incorporating

the second-order-correct Crank±Nicolson scheme and the modi®ed fully implicit scheme with a time

weighting value of two produces the most superior solutions. For small values of local Peclet number

or mildly advection-dominant transport, large time steps or large values of Courant number can be

adopted to achieve acceptably good solutions, but for strongly advection-dominant transport or large

values of local Peclet number, small time steps or small values of Courant number are required to

achieve acceptable results. Further work is currently in progress to derive a theoretical analysis of the

stability of this scheme.

Figure 8(b). GEM and exact solutions of example 3 with ®rst-order decay (m� 0�2, Pe� 50 and Cr� 0�2)
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